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Abstract

The increased use of botnets as an attack tool and the
awareness attackers have of blocking lists leads to the
question of whether we can effectively predict future bot
locations. To that end, we introduce a network quality
that we term uncleanliness: an indicator of the propen-
sity for hosts in a network to be compromised by outside
parties.

We hypothesize that unclean networks will demon-
strate two properties: spatial and temporal uncleanli-
ness. Spatial uncleanliness is the tendency for com-
promised hosts to cluster more densely within unclean
networks. Temporal uncleanliness is the tendency for
unclean networks to contain compromised hosts for ex-
tended periods.

We test for these properties by collating data from
multiple indicators (spamming, phishing, scanning and
botnet IRC log monitoring). We demonstrate evidence
for both spatial and temporal uncleanliness. We further
show evidence for cross-relationship between the vari-
ous datasets, showing that botnet activity predicts spam-
ming and scanning, while phishing activity appears to be
unrelated to the other indicators.

1 Introduction

Botnets are a common attack tool due to the anonymity
and flexibility that they provide attackers. Modern bots
can be used for DDoS, spamming, infiltration of local
networks, key-logging and other criminal acts [5, 15].
Past research, notably by Mirkovic et al. [18], has shown
that botnet based attacks can be divided into distinct
phases of acquisition and use.

We expect that bot acquisition is effectively oppor-

tunistic [2]: while attackers may avoid certain net-
works [24], in the majority of cases, attackers have no
interest or knowledge about targets except that the tar-
get is vulnerable. With automatically propagating attack
tools, an attacker may not know about the existence of a
target until after he compromises it.

As bot software has become more sophisticated and
flexible, it is now reasonable to expect that any publicly
accessible host on the Internet will be attacked by ev-
ery common method within a short period (for example,
specific variants of Gaobot can spread themselves using
network shares, AOL Instant Messenger, and multiple
Windows vulnerabilities1).

We therefore expect that within a short time, a host
will be attacked by every possible means of compro-
mise2. If we assume that an attacker cannot distinguish
between the hosts within a network, then he has an equal
chance of attacking any of them. In addition, with no
advance knowledge of what the target is vulnerable to,
an attacker will use all attacks available to him. Conse-
quently, the probability that a machine will be compro-
mised during some period is not a function of that host’s
attacker, but of its defenders.

We hypothesize that networks have a property, which
we term uncleanliness which is an indicator of the
propensity that hosts within a network will be compro-
mised. Our intuition is as follows: consider two in-
stitutions with different defensive postures. Institution
A maintains an aggressive firewall policy, disables all

1http://www.symantec.com/enterprise/
security response/writeup.jsp?docid=
2006-052712-1744-99&tabid=2

2A report of the expected time between attacks for spe-
cific vulnerabilities is available at http://isc.sans.org/
survivaltime.html; the interval between attacks for the average
address is on the order of 20 minutes
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email attachments, maintains all files on a central server
and restores all hosts on the network from a ghosted
state each night. Institution B has no central inventory
of machines, runs a variety of hardware and software
installations that administrators might not even know
about, has a large number of self-administered machines
and no firewall. We would expect that institution A
would be less vulnerable to attacks, and that if a ma-
chine was compromised, it would be restored to its orig-
inal state quickly. Conversely, machines in institution B
will be reached by larger number of attacks, and when
a machine is compromised, it may not be noticed or re-
paired until long after the compromise has taken place.

We can estimate the uncleanliness of a network by
examining its result: once an attacker has compromised
hosts, he will use them for criminal activities. If a host
is compromised, we expect that the attacker will use
it to, for example, spam, scan and DDoS networks. If
uncleanliness is a network-specific property, we expect
that compromised hosts will congregate in specific net-
works, which we quantify via the phenomena of spatial
and temporal uncleanliness. Note that uncleanliness is
a network level property: hosts are compromised, net-
works are unclean.

We define spatial uncleanliness as a tendency for
compromised hosts to cluster in unclean networks. Spa-
tial uncleanliness implies that if we see a host engaged
in hostile activity (such as scanning), we have a good
chance of finding another IP address in the same net-
work engaged in hostile activity. We will test for spatial
uncleanliness by examining the clustering of addresses
within networks.

We define temporal uncleanliness as a tendency for
compromised hosts to repeatedly appear in unclean net-
works. Temporal uncleanliness implies that if a host is
compromised, then other hosts within that network will
be compromised in the future. We will test for temporal
uncleanliness by examining the ability of unclean net-
works to predict future host compromises.

Figure 1 confirms our intuition for spatial uncleanli-
ness and temporal uncleanliness. This figure shows two
plots: the upper counts the number of unique hosts scan-
ning a large network from January to April, 2006. The
lower plot is a plot showing how many of these scanning
addresses were also present in a botnet reported during
the first week of March, 2006. This plot contains two
lines: one counts the number of unique addresses from
the bot report which were also identified scanning; the
second counts the number of unique addresses from the
bot report which were present in a 24-bit CIDR block
where at least one address was also scanning.

First note that these reports resulted from two differ-
ent detection methods: the bots were collected by ob-
serving IP addresses communicating on IRC channels,
while scanning data was collected using a behavioral
scan detection method deployed on an observed network
[6]. Despite this, there is a strong intersection between
the two sets: at its peak, 35% of the botnet’s addresses
are scanning the observed network.

Second, we observe that using the /24’s comprising
the botnet identifies more scanners than the botnet ad-
dresses alone; this value ranges between a 25% increase
and 4 times as many addresses depending on the activity.
We demonstrate in §4 that these results are statistically
significant.

Finally, Figure 1 also explains our intuition for tempo-
ral uncleanliness. As this figure shows, abnormal scan-
ning (and therefore botnet compromise) occurs over sev-
eral weeks. If bots take several weeks to be identified
and removed, we expect that an unclean network will be
unclean for some duration, and therefore we can predict
future hostile activity from the same network.

In this paper, we examine four potential indicators
of uncleanliness: botnet data, scanning activity, spam-
ming and phishing. We collect reports of unclean activ-
ity from multiple sources: public mailing lists and web
sites, private studies, and by examining traffic crossing
a large (multiple /8) network.

The primary contribution of this paper is an empirical
study of uncleanliness and its use as a predictive aid. We
test for the existence of spatial and temporal unclean-
liness by comparing the traffic from various reports of
hostile activity. We demonstrate that compromised hosts
are both more densely clustered than normal traffic and
predict future unclean activity. In addition, we show that
scanning, spamming and botnet activity shows evidence
of cross relationship, such as the scanning observed in
Figure 1. We also show that while these phenomena
do not predict future phishing sites, past phishing sites
do, therefore demonstrating that temporal uncleanliness
holds for all four indicators. We then test the strength of
this predictive mechanism by evaluating its suitability to
block traffic crossing a large network. We demonstrate
that limited predictive blocking is feasible, due to the
impact of locality [17] evident in network traffic.

The remainder of this paper is structured as follows:
§2 outlines relevant previous work in reputation man-
agement and identifying hostile groups by past history.
§3 describes our model and the data sources we use in
this paper. §4 examines the spatial uncleanliness hy-
pothesis, and §5 examines the temporal uncleanliness
hypothesis. §6 examines the impact of blocking unclean
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Figure 1: Relationship between scanning and botnet population

networks, and §7 discusses the results.

2 Previous Work

Researchers initially studied botnets due to their use in
DDoS attacks; in this domain, Mirkovic et al.[18] de-
fined a DDoS attack as a two-phase process: acquiring
hosts to use for the DDoS and then using those hosts to
conduct an attack. Freiling et al.[5] identify a variety of
other attacks that botnets can conduct efficiently, Collins
et al. [2] define bot occupation attacks as conducted by
opportunistic attackers: that is, the attacker has no inter-
est or knowledge of the target except that the target is
exploitable. Our work uses these concepts to study the
impact of largely automated acquisition and its impact
on network defense.

Botnet demographics have been studied using Hon-
eypots and by actively probing bot networks [8, 9, 21].
Rajand et al.’s [21] analysis is particularly relevant due
to the extended period during which they observed net-
work traffic, allowing them to identify not only botnet
demographics but activity. Our work differs from these
analyses by comparing multiple observed phenomena

and using this information to predict future activity.
In operational security, blacklists are commonly used

to identify and block hosts that are already assumed
to be hostile. Examples of such blacklists include
Spamhaus’ ZEN list [20] and the Bleeding Snort rule
set [23]. Researchers such as Levy [16] note that spam-
mers increasingly rely on the use of occupied hosts to
generate spam messages - these approaches are more
attractive to spammers because they offload processing
requirements from the spammer (as noted by Laurie et
al.[15]) and because they hide the attacker’s identity[4].

In addition, researchers have studied the impact of
blacklists on spamming and other hostile activity Jung et
al.[12] compare spamming blacklists against spam traf-
fic to MIT in 2000 and 2004, finding that in 2004, 80%
of spammers were identified by blacklists. Ramachan-
dran et al.[22], examine Blacklist abuse by botnet own-
ers. Ramachandran notes that botnet owners appear to
place a higher premium on addresses not present on
block lists. Since uncleanliness is intended to predict
future hostile addresses, this may impact the costs noted
by Ramachandran.

McHugh et al. use locality to characterize normal
network behavior and differentiate attacks. Krishna-
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murthy et al. [14] use netblocks to characterize target
audiences for networks, and demonstrate that many sites
have common audiences. This leads to a generalized
netblock-level approach developed by Jung et al. [10]
for DDoS defense. These methods of blocking are pred-
icated on the assumption that attack traffic differs from
normal traffic due to a limited and clustered audience for
any normal service. Our filtering approach differs from
the past history used in these cases by developing a set
of explicitly untrusted networks.

3 Source Data
We demonstrate evidence of uncleanliness by showing
that address distributions from unclean data sets show
specific qualities; in order to do so, we must collate in-
formation from various sources with different collection
methods. In this section we describe a simple taxon-
omy and notation scheme for managing our data; in the
following sections we use this data to demonstrate sig-
nificance. This section is divided as follows, §3.1 ex-
plains the taxonomy and notation for reports, and §3.2
describes the individual reports.

3.1 Model
In order to estimate the uncleanliness of a network, we
must compare data from multiple sources. For example,
an attacker may initially use a bot for scanning, then for
spamming. We call these sources reports, each of which
consists of a set of IP addresses describing a particular
phenomenon over some period. Reports differ by the
class of data reported, the period covered by the report,
and the method used to generate that data.

We use four classes of unclean data for this paper:

1. Bots: An IP address identified as hosting some
form of bot software or communicating with a bot-
net command and control host.

2. Phishing: An IP address identified as hosting a
phishing site in order to fraudulently acquire pri-
vate user information.

3. Scanning: An IP address identified as scanning us-
ing the methods developed by Gates et al. [7] and
Jung et al. [11].

4. Spamming: An IP address identified as spamming
using a behavioral spam detection technique 3.

3This spam detection method is currently under review

These reports all describe phenomena associated with
compromised hosts. Scanning and spamming are both
common botnet uses, and phishing requires setting up a
fraudulent web site.

We further divide reports as either provided or ob-
served. Provided reports are collected from external par-
ties, and can use different methodologies to observe the
same effects. For example, a phishing list can acquire
IP addresses by using spam traps [19] or by collecting
user reports, (e.g., the submission form at the Castle-
Cops PIRT service [1]). For the analyses within this pa-
per, we use only one source per report and assume that
the source’s collection methodology is consistent over
the report period. In contrast to provided reports, ob-
served reports are generated from network traffic logs
reporting traffic covering a large edge network.

We use a simple notation to describe all reports; each
report is differentiated by a tag which, for this paper,
summarizes the period and source for the report. We
express this using the notation RT. In this form, T is
the tag (e.g., scan). A list of reports used in this paper is
given in Table 1.

Because we expect uncleanliness to be a network
property, we define a CIDR masking function Cn(i).
The CIDR masking function evaluates to the unique
CIDR block with prefix length n that contains the IP ad-
dress i (e.g., C16(127.1.135.14) = 127.1.0.0/16 ). For
convenience, when the CIDR masking function is ap-
plied on a report S, the result is set-valued and returns
the set of all n-bit CIDR blocks in that set, that is:

Cn(S) ≡
⋃
i∈S

Cn(i) (1)

When determining whether or not an IP address re-
sides within a set of CIDR blocks, we will use a CIDR
inclusion relation, @, to indicate that an IP address is
resident in one of a set of CIDR blocks:

i @ S → ∃n s.t. Cn(i) ∈ S (2)

With all sets and reports, we use bars to indicate car-
dinality, i.e., |S| is the number of elements in the set S.

3.2 Reports
Table 1 is an inventory of all the reports used in this
paper. Recall that provided reports have been given to
us by other parties and that we generate observed reports
using traffic logs from the observed network. Because
we have greater control over observed reports, we can
generate these reports over arbitrary periods. We have
less control over when we receive provided reports.
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The observed network is composed of over 20 million
distinct IPv4 addresses and contains several servers that
are heavily used by clients across the Internet. Given the
size and activity of the observed network, we assume
that IP addresses from the Internet crossing into it are a
representative sample of the Internet as a whole.

In order to compensate for selection bias within ob-
served reports, all reports have been filtered to only in-
clude addresses which are outside of the observed net-
work and are not otherwise reserved (e.g., all addresses
specified in RFC 1918 have been removed from reports).

We classify four of the reports in this list as unclean
reports, these are the reports we use as ground truth
for identifying the four indicators discussed in §3.1:
botnet membership, phishing sites, scanners and spam-
mers. During the two week period of October 1st-14th,
2006, we have both provided and observed reports on all
classes of unclean activity, consequently we use October
1st-14th to test temporal uncleanliness.

The next set of reports are used specifically to
test the spatial and temporal uncleanliness hypotheses.
The bot− test report describes a small botnet from 5
months before all the other activity analyzed in this pa-
per, bot− test is used as an extreme case for prediction:
if a five-month old report can accurately predict current
unclean activity, then a more recent one should be more
effective.

The control report consists of 47 million unique IP
addresses observed during the week of September 25th,
2006. We compare the data from our other reports
against randomly generated subsets of control in order
to determine whether or not these reports exhibit spatial
or temporal uncleanliness. We use the control report to
more accurately reflect the structure of IPv4 space than
we would using purely randomly chosen IP addresses.
The report consists of IP addresses observed to engage
in payload-bearing TCP activity, which reduces the risk
of the address being spoofed. Furthermore, as noted in
§3.1, the observed network includes a variety of servers
used by hosts throughout the Internet, and by focus-
ing exclusively on the IP addresses of the hosts with-
out using any criteria apart from the unspoofed criterion,
we expect the resulting report to approximate a random
sample of active IP addresses on the Internet.

4 Spatial Uncleanliness
We define spatial uncleanliness as the propensity for oc-
cupied addresses (bots) to be clustered in unclean net-
works. In this section, we formulate and test the spatial
uncleanliness hypothesis.

This section is divided as follows: §4.1 describes the
methodology used to test for spatial uncleanliness. §4.2
describes the results of our tests and shows evidence for
spatial uncleanliness.

4.1 Model and methodology
Recall our assumption that the likelihood of a host being
compromised is a network property: if a network is un-
clean, then its administrators will not identify compro-
mised machines or rapidly repair them. Consequently,
we expect that multiple hosts within an unclean network
will be compromised, and that compromised addresses
will cluster within unclean networks. In order to test this
hypothesis, we will compare the expected population of
compromised hosts within equally sized CIDR blocks.

To test for spatial uncleanliness, we begin with a mea-
surement for comparative density. If we have two sets,
S1 and S2, and |S1| = |S2|, then we say that S1 is
denser at n-bits if the number of n-bit CIDR blocks
that S1 occupies is less than the number of n-bit CIDR
blocks occupied by S2.

Throughout this paper, we use homogeneously sized
CIDR blocks to model individual networks. While other
categorization techniques are available we opt to use ho-
mogeneously sized CIDR blocks in order to control for
population. Heterogeneous partitions, such as Krishna-
murthy et al.’s network-aware clustering method [14]),
result in networks that differ in size by several orders of
magnitude.

In §1, we stated that spatial uncleanliness implies that
if a host is compromised, there is a good chance an-
other host on the same network will be compromised.
Consequently, if we had a set of compromised host ad-
dresses, and a control set of randomly selected addresses
with equal cardinality, we would expect that the com-
promised address set was at least as dense at all CIDR
prefix lengths.

We therefore summarize the spatial uncleanliness hy-
pothesis as follows: if we have a report which selects
unclean traffic from the Internet, Runclean, then the IP
addresses within that report will be more densely packed
than a randomly selected set of IP addresses with equal
cardinality.

To test the spatial uncleanliness hypothesis, we use
the formulation given in Equation 3 below. Assuming
that we have two reports, Runclean which reports on un-
clean traffic, andRcontrol which is control data, and both
reports are of equal cardinality, then:

∀n ∈ [16, 32] |Cn(Runclean)| ≤ |Cn(Rcontrol)| (3)
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Unclean reports
Tag Type Class Valid Dates Size Reporting method
bot Provided Bots 2006/10/01-2006/10/14 621,861 Bot addresses acquired through pri-

vate reports from a third party
phish Provided Phishing 2006/05/01-2006/11/01 53,789 Addresses from a Phishing report

list
scan Observed Scanning 2006/10/01-2006/10/14 151,908 IP addresses scanning the observed

network
spam Observed Spam 2006/10/01-2006/10/14 397,306 IP addresses spamming the ob-

served network
Reports for hypothesis testing

bot− test Provided Bots 2006/05/10 186 Botnet addresses acquired through
private communication

control Observed N/A 2006/09/25-2006/10/02 46,899,928 Control addresses acquired from the
observed network

Table 1: Table of tags used in this report

Based on DDoS filtering work done by Collins and
Reiter [3], we expect that 16 bit prefix lengths will be
too imprecise for effective filtering and detection. Con-
sequently, we limit our prefix lengths to between 16 and
32 bits.

4.2 Analysis
In order to test the spatial uncleanliness hypothesis, as
formulated in Equation 3, we compare the population of
addresses per n-bit CIDR blocks for an unclean report
against the expected population for n-bit CIDR blocks
across the Internet as a whole.

As discussed in §3.2 we model network populations
by randomly selecting IP addresses from the Rcontrol re-
port. Kohler et al. [13] observe that IP addresses are
not evenly distributed across IPv4 space; as a conse-
quence, a purely random model will result in an arti-
ficially depressed density estimate. To compensate for
this, we test two population estimates. The first, naive,
estimate selects addresses evenly from across all /8’s
which are listed as populated by IANA4. The second,
empirical, density estimate draws addresses from a pool
of addresses observed to cross the network under obser-
vation from the week of September 25th–October 1st,
2006. In the empirical estimate, we create 1000 ran-
domly generated subsets of Rcontrol and group the re-
sulting addresses.

Figure 2 plots the number of addresses per block

4http://www.iana.org/assignments/
ipv4-address-space

for CIDR block prefix lengths of 16 to 32 bits. This
plot compares the botnet density, Rbot, against both
the empirical and naive density estimates of equal size
(621,861 addresses, as per Table 1). As this figure
shows, the botnet population is more tightly packed than
both empirical and naive estimates. In the case of the
empirical estimate, botnet data results in nearly twice
as many addresses per block for prefix lengths between
18 and 24 bits. The naive estimate is zero throughout
these results. Based on the results from Figure 2, we use
empirical estimation throughout the rest of this paper.

Figure 3 compares control data (empirically esti-
mated populations) against each of our four datasets:
spamming, scanning, botnet population and phishing.
In comparison to the population plot in Figure 2, these
plots represent the total number of n-bit blocks observed
for that population; since each population is of equal
size, the lowest line will have the highest density. For
each plot in Figure 3, the control data consists 1000 ran-
dom subsets of Rcontrol and plotting the resulting distri-
bution as a boxplot.

Figure 3(i) is a plot of the comparative volume for
Rbot. As this plot shows, the population ofRbot is more
densely packed than the expected population drawn
from Rcontrol. Figure 3(ii) plots the volume of Rphish

reported from May to October, 2006. We use a five
month sample due to the smaller size of the phishing
reports in comparison to the other reports. As noted in
Table 1, the 6 month phishing report is approximately
an order of magnitude smaller than the other unclean
reports. As with Figure 3(i), addresses in the phishing
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Figure 2: Density of botnets per netblock, compared against empirical and naive control sets

report are more tightly packed than addresses selected
from the control report.

Figure 3(iii) plots the volume of Rspam from October
1st to 14th, 2006. Figure 3(iv) plots the volume ofRscan

for the same period. Each of these reports is more tightly
packed than the comparative control reports.

As Figures 2 and 3 show, unclean reports have an n-
bit density greater than or equal to or greater then the
n-bit density of the control reports for all values of n.
Consequently, this data supports the spatial uncleanli-
ness hypothesis: compromised hosts are disproportion-
ately concentrated in certain networks.

5 Temporal Uncleanliness
We now address temporal uncleanliness: the propen-
sity for networks to remain unclean for extended peri-
ods of time. In order to test for temporal uncleanliness
we compare the ability of a report of unclean addresses
to predict future compromised addresses; in particular,
whether or not a report of bot addresses can predict fu-
ture bots, spamming, scanning and phishing.

This section is divided as follows: §5.1 describes our

method for measuring the presence of temporal unclean-
liness, and §5.2 shows the results.

5.1 Model and methodology
To observe temporal uncleanliness, we examine the pre-
dictive capacity of reports of unclean data. Consider
three reports:Rtest, Rcontrol and Rresult. If Rtest and
Rcontrol are of equal cardinality, then Rtest is a better
predictor of the report Rresult at prefix length n if:

|Cn(Rtest) ∩ Cn(Rresult)| >

|Cn(Rcontrol) ∩ Cn(Rresult)| (4)

If temporal uncleanliness exists, then we expect that
unclean reports will consistently be better predictors of
future unclean reports than a control report. However,
we note that due to spatial uncleanliness, an unclean re-
port will have fewer n-bit CIDR blocks than an equiv-
alent control report. As a consequence, as block size
increases, the control report will have a larger number
of imprecise successes. Therefore, there will be some
prefix length below which a control report will always
be a better predictor than the test report.
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Figure 3: Comparative density of Unclean netblocks against Rcontrol

For testing, we use the form of the temporal unclean-
liness hypothesis given in the equation below. Given
that Runclean and Rcontrol have equal cardinality, then

∃n ∈ [16, 32] s.t.
|Cn(Runclean) ∩ Cn(Rresult)| > |Cn(Rcontrol) ∩ Cn(Rresult)|

(5)

That is, there exists a prefix length where a previously
generated report of unclean activity is more predictive
of present unclean activity than a control report of equal
cardinality. As with spatial uncleanliness, we limit our
analyses to CIDR blocks of at least 16 bits.

5.2 Analysis
We now test the temporal uncleanliness hypothesis for-
mulated in Equation 5. To do so, we compare the effec-

tive predictiveness of Rbot−test on the unclean reports
during the period of October 1st-14th, 2006.

Figure 4 shows the relative predictive capacity of
Rbot−test against future unclean reports; for these fig-
ures, Rphish is a sub report of Rphish from Table 1. This
report is considerably smaller than the other reports,
with 2302 addresses. This results in a smaller degree of
intersection with the randomly generated reports from
the control report.

As in §4.2, we generate the reference line by plot-
ting a boxplot showing the variance of 1000 randomly
selected test reports. In contrast with Figure 3, the
small cardinality of Rbot−test ensures that the variations
observed by the boxplot are visible. We consider the
Rbot−test to be a better predictor than Rcontrol if the car-
dinality of its intersection with the corresponding un-
clean report is higher than the intersection with ran-
domly selected addresses in 95% of the observed cases.

As Figure 4 shows,Rbot−test is a better predictor than

8



Rcontrol for botnets, spamming and scanning at various
prefix lengths. Also of note is the impact of spatial un-
cleanliness: in these three figures, Rbot−test is a bet-
ter predictor for prefix lengths of approximately 19-20
bits and longer. At shorter prefix lengths, randomly se-
lected addresses become better predictors. Using the
95% threshold, Rbot−test is a stronger predictor of fu-
ture botnet activity between 20 and 25 bits, spamming
between 19 and 32 bits, and scanning between 20 and 24
bits. For prefix lengths longer than these values, the two
reports are equally predictive due to the low probability
of seeing CIDR blocks from either report intersect.

Figure 4(ii) plots the predictive capacity of Rbot−test

against Rphish. In contrast to the other plots in Figure 4,
this plot indicates that Rbot−test is not a good predictor
of future phishing activity in comparison to randomly
selected control sets.

We have two hypotheses as to why phishing this is
so: Ramachandran et al. [22] describe how botnet own-
ers place a higher premium on addresses that have not
yet been identified as bots. Because phishing sites need
to be publicized, a phishing IP address becomes pub-
lic knowledge, marked on blacklists and consequently
highly unattractive for the owner of a botnet.

An alternative explanation is that, in contrast to bot-
nets, phishing sites are generally hosted on web servers,
and a phisher may prefer to host phishing sites in a
actual datacenter to ensure robustness during a flash
crowd. At the minimum, a phishing site must be pub-
licly accessible, while a bot can exist behind a NAT or a
firewall and still be useful. Therefore, phishers may pre-
fer sites that are already hosting web servers and have
the resources to handle a high traffic load.

In order to determine whether the temporal uncleanli-
ness hypothesis does hold for phishing, we now consider
a test that uses phishing data exclusively. Figure 5 plots
the intersection of Rphish−test against the same phishing
set as in Figure 4(ii). In this case, |Rphish−test| = 1386.
We note that this figure shows strong evidence for tem-
poral uncleanliness in phishing.

Since these results show that five month old reports
can be used to more effectively predict the population of
future reports than randomly selected IP addresses from
a week before, we conclude that the temporal uncleanli-
ness hypothesis is supported by this data. Furthermore,
in Equation 5, we chose a range of IP blocks arbitrarily,
we can now establish a lower limit for the prefix length
of 20 bits, an an upper limit in excess of 24 bits.

We have also shown that phishing activity and botnet
activity are not related in the way that bots, scanning and
spamming are. As noted elsewhere [21, 15], scanning

and spamming are commonly implemented with bot-
nets, so we would expect thatRbot,Rscan andRspam are
related. However, the inability of Rbot−test to predict
future phishing activity suggests that a measurement for
uncleanliness will have to be multidimensional: phish-
ing sites are still taken over, but it may be that phishers
have different criteria for the machines they occupy than
botnet owners.

6 Blocking Tests

The spatial and temporal uncleanliness hypotheses to-
gether provide a method for identifying compromised
hosts. Spatial uncleanliness implies that if an address
within a network is occupied, then we can expect other
networks within the same netblock to be occupied. Tem-
poral uncleanliness indicates that if we have seen an ad-
dress in the past used for an attack, then we can expect
addresses from the same network to do so in the future.

We now address the issue of whether unclean net-
works can be effectively blocked; that is, whether or not
blocking a set of unclean networks will adversely affect
traffic into an active network. To do so, we will examine
the impact of blocking a set of unclean networks from
two weeks of network traffic. In this section, we com-
pare the expected false positive and false negative values
over a range of operating characteristic values. For this
work, the operating characteristic is n, the CIDR block
prefix length.

We begin by collecting traffic logs of all traffic that
crosses the observed network from all IP addresses i @
C24(Rbot−test) for the test period of October 1st-14th
2006. This report, Rcandidate consists of all IP addresses
crossing the observed network which share a /24 in com-
mon with any of the IP addresses in Rbot−test. This al-
lows us to test the effectiveness of filtering from the /24
to the /32 range; we pick this range because, as seen in
Figure 3, 24 bits is the minimum block size at which
Rbot−test is an unambiguously better predictor of future
uncleanliness than control data. We further constrain
Rcandidate to those addresses which generate at least one
TCP record during this time period.

The source data used for this analysis is CISCO Net-
Flow5 traffic records, which are a compact summariza-
tion of traffic information, but do not contain payload.
As a consequence, our analysis will have some degree
of uncertainty as we cannot directly validate the pay-
load. We will therefore differentiate addresses in two
ways: by membership in one of the unclean reports and

5http://www.cisco.com/go/netflow
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Figure 4: Comparative predictive capacity of Rbot−test against control data

by behavior.
We partition the Rcandidate into three reports:

Runknown, Rhostile and Rinnocent. A full inventory of the
reports used in this analysis is given in Table 2.
Rhostile consists of any IP address in Rcandidate that is

also present in the unclean reports (i.e., scanning, spam-
ming, phishing or botnet membership). The hostile set is
identified purely by intersecting these reports, and once
an IP address is identified as hostile it cannot be present
in the remaining two reports. Runknown is comprised of
the addresses inRcandidate address which are not present
in one of the unclean reports, but have no payload bear-
ing flows. We define a flow as payload-bearing if it is a
TCP flow with at least 36 bytes of payload and at least
one ACK flag. Due to TCP options, a 3-packet SYN
scan will often have 36 bytes of payload, even though
this data is still part of the TCP handshake. Hand-
examination of the flow logs found multiple examples

of 36-byte SYN-only scans to apparently random ports
on distributed targets.

The IP addresses in Runknown are not proven to be
hostile but are highly suspicious. Due to the lack of
payload in flow data, we cannot definitively categorize
members of this report into either of the other two re-
ports and consequently we remove them from the false
positive and false negative calculations.

The population of Rinnocent consequently consists of
any IP address which does conduct payload-bearing
TCP activity and is not present in any of the unclean
reports.

Our prediction scenario assumes that an organization
receivedRbot−test and is blocking CnRbot−test for some
value of n ∈ [24, 32]. The success of this defensive
mechanism is based on how many hostile and innocent
addresses are blocked by the attack mechanism (as noted
above, while the unknown population is calculated and
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Figure 5: Comparative predictive capacity of phishing reports

Reports used for prediction testing
Tag Type Class Valid Dates Size Reporting method

unclean Provided Special 2006/10/01-2006/10/14 1,158,103 The union of the four unclean re-
ports, note that there is overlap

candidate Observed N/A 2006/10/01-2006/10/14 1030 IP Addresses crossing the network
border and which are in the same
/24’s as Runclean

hostile Observed N/A 2006/10/01-2006/10/14 287 Members of Rcandidate also present
in Runclean

unknown Observed N/A 2006/10/01-2006/10/14 708 Members of Rcandidate not in
Runclean, but engaged in suspicious
activity

innocent Observed N/A 2006/10/01-2006/10/14 35 Members ofRcandidate not present in
Rhostile or Runknown

Table 2: Table of reports used for prediction test

analyzed in this exercise, it is not scored). The score for
the defensive mechanism is the relative success, mea-
sured in true and false positives of the filter as a function
of n. We define a false positive as a member ofRinnocent

blocked by the filter, and true positive as a member of
Rhostile blocked by the filter.

To calculate the true and false positive rates, we define
a membership function, m:

m(i, S) =

{
1 C32(i) @ C32(S)
0 otherwise

(6)

For any prefix length n, we calculate the population
as a function of n by summing the unique IP addresses
that appear within the Rbot−test

pop(n) =∑
i@Cn(Rbot−test)

m (i,Rcandidate ∩ (Rinnocent ∪Rhostile))

(7)

As noted above, this calculation explicitly avoids the
use of Runknown. We calculate the true positive and true
negative values by calculating a similar value over the
various reports:

TP(n) =
∑

i@Cn(Rbot−test)

m(i,Rcandidate ∩Rhostile) (8)
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FP(n) =
∑

i@Cn(Rbot−test)

m(i,Rcandidate ∩Rinnocent)

(9)
Table 3 summarizes the effectiveness of this predic-

tion method. As this table shows, all three populations
increase as the bit length increases. At n = 24, 90% of
the incoming addresses are correctly identified as hos-
tile. If we assume that unknown address are hostile, true
positive rate is 97%. Furthermore, the false positive rate
remains relatively low until n = 26.

n TP (n) FP (n) pop(n) Runknown

24 287 35 322 708
25 172 22 194 344
26 81 1 82 200
27 38 1 39 105
28 18 0 18 60
29 7 0 7 29
30 1 0 1 14
31 1 0 1 7
32 1 0 1 0

Table 3: Observed true and false positive counts

Of note with this dataset are the volume of uncer-
tain addresses (i.e., the population of Runknown). At a
24 bit prefix length, |C24(Rbot−test) ∩ C24(Runknown)|
yields approximately 700 addresses. We first note that
unknown addresses have engaged in TCP communica-
tions, but have not exchanged payload - consequently,
blocking these addresses does not impact traffic.

Of more concern is that all of the addresses in
Runknown engage in some form of suspicious behavior
(that is, suspicious apart from trying to connect with
the network and not exchanging payload). Hand exam-
ination found many address trying to open communica-
tions from ephemeral ports to ephemeral ports (notably
port TCP/51736) and slow scanning (the scan detection
mechanism is calibrated to identify scans that take place
over an hour, scans observed in this dataset would often
contact less than 30 addresses a day over the course of
the test period).

The strength of this blocking method is predicated on
the relatively sparse amount of traffic issuing from these
netblocks. As Table 3 shows, 1030 IP addresses were
blocked when n was set to 24 bits. |C24(Rbot−test)| =
173, which yields a potential set of 44,288 address that
can be blocked. Consequently, less than 2% of the total
IP addresses available in those /24s communicated with

the observed network during this time.
Some of the effectiveness of this method may be at-

tributed to the demographics of the botnet and the net-
work Rbot−test consists primarily of addresses outside
the English-speaking world, with 70% of the addresses
coming from Turkey. In addition, the network under ob-
servation is primarily an edge network; that is, all traffic
at its border is either originating from an address within
that border or going to an IP address within that border.
Therefore, while we have shown that a five-month old
botnet can still be used to effectively predict and halt
hostile traffic, issues of demographics and a network’s
target audience must also be evaluated.

7 Conclusion
In this paper, we have demonstrated that it is possible to
effectively predict future hostile activity from past net-
work activity. To do so, we have defined a network-
based quality of uncleanliness, which is an indicator of
how likely a network is to contain compromised hosts.

As an initial work in this field, we have focused on
testing basic hypotheses about uncleanliness, which we
have defined with the spatial and temporal uncleanliness
hypotheses. Using reports of network activity and traf-
fic logs of a large network we have shown evidence of
spatial and temporal uncleanliness. We have also shown
that an uncleanliness measure may involve multiple di-
mensions, such as botnets and phishing.

Finally, we have demonstrated that spatial and tem-
poral uncleanliness, coupled with the limited audience
of an edge network, can be effectively used to block
hostile traffic in the future. Given the demographics is-
sues noted in §6, uncleanliness may best be used as a
risk indicator - by showing that a network is demonstrat-
ing in unclean behavior, security personnel can evaluate
whether the risk of hostile activity from the network is
worth the benefit of receiving commerce and communi-
cation from that network under normal circumstances.

Our immediate goal following this work is to develop
a more rigorous metric for uncleanliness, in particu-
lar a multidimensional uncleanliness metric to measure
the aggregate probability that an address is occupied.
The elements of this metric involve the components dis-
cussed in this work as well as other predictive indica-
tors of vulnerability (communication with botnet C&C
nodes).

We also believe that spatial uncleanliness, in partic-
ular, has useful implications for network log analysis.
If we know that a host from one network is attacking,
scanning or otherwise interfering with the traffic on an
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observed network, it is reasonable to examine other traf-
fic from that network to see if there is coordinated hos-
tile activity.
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